Privacy-Preserving Predictive Models for Lung Cancer Survival Analysis
نویسندگان
چکیده
Privacy-preserving data mining (PPDM) is a recent emergent research area that deals with the incorporation of privacy preserving concerns to data mining techniques. We consider a real clinical setting where the data is horizontally distributed among different institutions. Each one of the medical institutions involved in this work provides a database containing a subset of patients. There is recent work that shows the potential of the PPDM approach in medical applications. However, there is few work in developing/implementing PPDM for predictive personalized medicine. In this paper we use real data from several institutions across Europe to build models for survival prediction for non-small-cell lung cancer patients while addressing the potential privacy preserving issues that may arise when sharing data across institutions located in different countries. Our experiments in a real clinical setting show that the privacy preserving approach may result in improved models while avoiding the burdens of traditional data sharing (legal and/or anonymization expenses).
منابع مشابه
Prognostic value of various metabolic parameters on pre-treatment 18-F-FDG PET/CT in patients with stage I-III non-small cell lung cancer
Background: the aim of this study was to investigate the prognostic value of 18Fluorine-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) parameters in both overall survival and progression-free survival in Stage I-III non-small cell lung cancer (NSCLC). Materials and Methods: In this retrospective study, 267 patients who were diagnosed as Stage I-III non-smal...
متن کاملPredicting Survival of Patients with Lung Cancer Using Improved Adaptive Neuro-Fuzzy Inference System
Introduction: Lung cancer is the main cause of mortality in both genders worldwide. This disease is caused by the uncontrollable growth and development of cells in both or one of the lungs. Although the early diagnosis of this cancer is not an easy task, the earlier it is diagnosed, the higher will be the chance of treating. The objective of this study was to develop an optimized prediction mod...
متن کاملPredicting Survival of Patients with Lung Cancer Using Improved Adaptive Neuro-Fuzzy Inference System
Introduction: Lung cancer is the main cause of mortality in both genders worldwide. This disease is caused by the uncontrollable growth and development of cells in both or one of the lungs. Although the early diagnosis of this cancer is not an easy task, the earlier it is diagnosed, the higher will be the chance of treating. The objective of this study was to develop an optimized prediction mod...
متن کاملPrivacy-preserving models for comparing survival curves using the logrank test
The incorporation of electronic health care in medical institutions will benefit and thus further boost the collaborations in medical research among clinics and research institutions. However, privacy regulations and security concerns make such collaborations very restricted. In this paper, we propose privacy preserving models for survival curves comparison based on logrank test, in order to pe...
متن کاملExtracting Predictor Variables to Construct Breast Cancer Survivability Model with Class Imbalance Problem
Application of data mining methods as a decision support system has a great benefit to predict survival of new patients. It also has a great potential for health researchers to investigate the relationship between risk factors and cancer survival. But due to the imbalanced nature of datasets associated with breast cancer survival, the accuracy of survival prognosis models is a challenging issue...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008